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Complex Zeros of the Modified Bessel 
Function Kn( Z ) 

By R. Parnes 

Abstract. The complex zeros of Kn(Z) are computed for integer orders n = 2(1)10, to 9D 
figures, using an iterative interpolation scheme. 

1. Introduction. The investigation of wave propagation and scattering in 
elastic media is often performed by means of integral transform methods. The analysis 
of such problems in cylindrical coordinates often leads to waves whose transformed 
potential functions are expressed in terms of modified Bessel functions. In particular, 
the potentials for outgoing radiating waves which decay with increasing distance 
from the source are expressed in terms of modified Bessel functions of the second 
kind, Kn(Z). In the course of a recent study using the Laplace transform, it was 
necessary to determine complex zeros of Kn(Z) in order to locate poles of the solution 
required for the inversion. It is believed that the tabulated zeros given below will 
permit the evaluation of several significant scattering problems. 

Several methods for the evaluation of zeros of Bessel functions, notably by 
means of asymptotic expansions, have been given by Olver [1] and Luke [2]. The 
methods developed by Olver, however, are not entirely applicable in the present 
case, since the convergence only improves with large orders of n. On the other hand, 
the rational approximations given by Luke have been proved, under appropriate 
restrictions of the parameters, to converge in the first quadrant; convergence for 
larg ZI < 7r has recently been established by Fields [3]. It should be observed that 
Cochran and Hoffspiegel [4] have extended the work of Olver for determining the 
positive real or purely imaginary zeros of Hankel functions with respect to noninteger 
orders when the variable is held fixed. However, their methods are inapplicable, 
since the zeros of the modified Bessel functions are seen to be always complex. A 
method for the evaluation of complex zeros of cylinder functions was given by Doring 
[5] based on MacMahon and Olver expansions. Tabulated values were given for 
some zeros of Hankel functions Hn(Z) which can be related to those of Kn(Z). 

The zeros presented below to 9D significant figures were calculated according 
to a method described in the following section. 

2. Formulas and Method. The modified Bessel function of the second kind 
is given by the expression 
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K.(Z) = 1 E ) (-l -r r 1)! (2/ZW2T (1) r=O 2! 

+ (I) : E 
- 

r!(Z/)+2r {In(Z/2) - 21[t(r + 1) + t(n + r + 1)]}, r=O r! (n +r) 

where 

(2) '(n + r Jr1) = 1 + 1/2 + 1/3 + ? + 1(n + r)- y 

and where y = 0.57721 56649 015329 
Due to the logarithmic term, a branch cut is required and is taken along the 

negative real axis, with the branch point at the origin, such that -r < arg Z _ 'r. 
Following Watson [6], it may be shown that the finite zeros for the given branch 

lie in the quadrants for which 7r/2 < Iarg ZI < 7r, i.e., all zeros have Re Z < 0 but 
cannot lie on the negative real axis. Furthermore, the zeros are known to occur 
in complex conjugate pairs. 

Letting Kn(Z) = Re", the local region of the zeros is first determined by tracing 
the argument 0 along a sequence of closed contours. Since Kn(Z) contains no poles 
for Z 5 0, use is made of the theorem which states that, for such an analytic function, 
the number of zeros in a region is l/27r times the change of argument 0 of the function 
in going around a closed contour enclosing the region [7]. 

Having localized the region of the zeros Z0 of Kn(Z) by the above procedure, 
a grid is established within the region with a spacing A (1) for both the real and 
imaginary parts of Z = a + ib, giving a sequence of points { a"', b('l }. 

The grid points Z(1) are mapped into the function space of Kn(Z); the closest 
location of the zero is sought according to the required condition that IK,,(Z)l be 
a minimum. Denote this point by Z1, and let the mesh within which the zero is located 
be defined by the points (a1, b1), (as, bi+1), (ai+1, b1), (ai+1, bi+1) [Fig. 1]. A more 
accurate location of the zero (a, b) within the mesh may now be sought by means 
of a double linear interpolation scheme. Letting 

(3) Kn(ar + ibs) = ar,s + 0i,rasa 

the approximate location of (a, b) lying within the mesh is then given by 

(4) a = a, + cl(ai+i - a), 

b = bi + c2(bi+l - bi) 
where 

(5) -g a(og, 
a 

,.) + , 
-(i. 

c (ai+,i_ a 'i)2 + (3i+1,i _ oi,i)2 ' 

a- Jai ai,, ? 3ij,ij - i+) (6) C2 = i)2 + (/3i,i?1 _ oiji)2 
(ai. i+l-i. ai) , .il-A,i 

Once the location of the zero, Z0() = a + ib within the mesh is found, a second 
grid system with spacing A (2) = A(1)/10 is established in the neighborhood of this 
point; upon repetition of the above calculations, a more accurate value Z(2) is ob- 
tained. 
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TABLE I 

n p zo 

2 1,2 -1.28137 3798 4 0.42948 4965 i 

3 1,2 -1.68178 8805 i 1.30801 2032 i 

4 1,3 -1.97816 1863 i 2.20437 1982 i 
2, 4 -2.62867 1168 ? 0.43269 6649 i 

5 1,3 -2.21862 6275 ? 3.11308 2945i 
2, 4 -3.13513 2845 ? 1.30388 2398 i 

6 1, 4 -2.42340 4388 ? 4.03096 1581 i 
2,5 -3.55109 7904 ? 2.18349 5178 i 
3, 6 - 3.96155 8070 ? 0.43334 5409 i 

7 1, 4 - 2.60312 6266 ? 4.95596 9607 i 
2, 5 -3.90812 5740 ? 3.07087 1770 i 
3,6 -4.51262 6778 ? 1.30277 8842i 

8 1, 5 -2.76414 2977 ? 5.88671 2882 i 
2, 6 -4.22315 2279 ? 3.96506 5969 i 
3,7 -4.98827 8792 4 2.17708 2746i 
4, 8 -5.29076 1293 i 0.43357 7695 i 

9 1, 5 -2.91058 2423 ? 6.82219 0331 i 
2, 6 -4.50646 5946 ?4 4.86520 7143 i 
3, 7 -5.40974 7448 ?4 3.05654 4239 i 
4,8 -5.86655 1467 ? 1.30232 8327 i 

10 1, 6 -3.04529 3499 ?4 7.76165 5671 i 
2, 7 -4.76484 5373 ? 5.77055 5599 i 
3, 8 -5.79002 7164 ?4 3.94097 2616 i 
4,9 -6.37839 4971 ? 2.17424 8586i 
5, 10 -6.61848 1885 ?t 0.43368 6206 i 

The procedure is then repeated successively giving a sequence of zeros, { Z(10 
z(2) * 

0 - ( ... }. Each refinement of the grid, ! = An-''/10, yields 
a further significant figure in the location of the zero. The procedure may be repeated 
provided the number of significant figures is within an accuracy consistent with the 
accuracy of Kn(Z). 

3. Results. The zeros of Kn(Z) were determined for integer orders n = 0(1)10. 
Calculations were performed on an IBM 360/50 computer using double precision 
which would indicate a possible accuracy of 15-17 significant figures. The procedure 
described above was repeated to yield complex zeros to 9D significant figures. 

An estimate of the accuracy of the calculated zeros Z = Z0 with respect to the 
true zeros Z = Z* may be obtained from the relation 
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(7) K.(Zo) - K.(Z*) + K.(Z*). (Zo - Zo*). 

The order of the error I Zo -Z* is then determined from 

(8) IZo - Z* 1 I KX(ZO)I/I Kn(Z*)I t I Kn(Zo)I/I Kn(Zo)l. 

For all the values Z = ZO presented, the remainders are IK,(Zo)l < O(10-10), 

while all IKt(Zo)l are found to be of order unity; hence, IZ, - Z*1 O(10-10) < 
0(10-9), thereby indicating an accuracy of at least 9D significant figures. 

It is noted that Kn has no finite zeros for n = 0, 1. Furthermore, the number N 
of zeros for each integer n, in the pair of quadrants Re Z < 0, agrees with the number 
given by Watson [6, p. 511 ff.], viz. "*.* the number is the even integer which is 
nearest to n - ". Thus, denoting the zeros as Z,, for each n, 

p 1, 2, 3, , N, 

where 

N =n, n even, 

= n-1, nodd. 

The complex zeros of Kn(Z) are given in Table I. For n _ 5, upon interchanging 
the real and imaginary parts, it is observed that the tabulated zeros are in agreement 
to all significant figures with the values of the zeros of Hankel functions Hn )(Z) 
given by Doring [5] in the cases where the zeros coincide. 

It is also apparent that the zeros of K&(Z>fall into a definite pattern as is shown, 
for the positive quadrant, in Fig. 2, where the zeros are observed to lie at the inter- 

sections of the suggestive curves. 
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